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POLAR CAP ABSORPTIONS AND ASSOCIATED 

19TH SOLAR CYCLE 
SOLAR-TERRESTRIAL EVENTS THROUGHOUT THE 

Yukio Hakura* 
NASA-Goddard Space Flight Center 

Greenbelt, Maryland 

ABSTRACT 

Solar cycle variations in the high-energy-particle-emission of the 

sun is examined using daily PCA-indices , selected solar-terrestrial 

events, along with satellite observations of low energy solar protons, in 

the years 1954-65. A close relation between PCA's and type IV solar 

radio outbursts existed throughout the last solar cycle. The solar 

corpuscular activity showed three peaks in 1957, 1960, and 1963, giving 

an asymmetric Butterfly shape to the latitude-time distribution of type 

IV-sources. The first peak, which coincides with a sole maximum of 

sunspot numbers, is characterized by a random occurrence of type IV 

outbursts, PCA's, and geomagnetic SSC's. Active centers were re- 

stricted in two parts of narrow heliographic longitudes during the sec- 

ond, the most prominent peak, giving a slight 27 days-recurrence to the 

corpuscular activity. Finally, a pronounced peak of 27 days-recurrence 

appeared during the third period in spite of a rather decreased corpuscu- 

lar emissivity. A recurrent series of solar Mev protons lasted for 15 

*Senior Research Associate, National Academy of Sciences, National Academy of Engineering, 
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solar rotations, while those of geomagnetic Kp index and galactic cos- 

mic ray intensity for 25 rotations. The appearance of recurrent Mev 

protons in the later phase of a solar cycle is controlled not only by the 

sector structure of the interplanetary space, but also more fundamentally 

by the energetic proton-productivity of the sun. 

vi 



POLAR C A P  ABSORPTIONS AND ASSOCIATED 

19TH SOLAR CYCLE 
SOLAR-TERRESTRIAL EVENTS THROUGHOUT THE 

\ 1. Introduction , 

It has been known that the sun is an emitter of energetic particles which are 

the cause of various electromagnetic disturbances in the earth's upper atmosphere. 

In particular, during an intense solar flare, it emits not only a magnetized plasma 

cloud which is responsible for geomagnetic and galactic-cosmic-ray storms, but 

also, on occasions, very high-energy particles known as solar cosmic radiations. 

Since the first observation of an unusual increase of cosmic rays in 1942 

(Forbush, 1946), at least 14 events with proton-energy Ep > 1 Bev have been 

found by ground based observations. An arrival of sub-relativistic energy parti- 

cles (E, = 1 - 1000 MeV) is not detectable at the ground level, but this informa- 

tion is available from various space vehicles or indirectly from ionosphere ob- 

servations. These particles emitted from a solar flare, precipitate upon the 

polar cap ionosphere, thereby producing an enhanced ionization that causes a 

severe absorption effect on radio waves. Thus the event is called the Polar Cap 

Absorption, or PCA. (Bailey, 1964; Hultqvist, 1963; Obayashi and Hakura, 1960). 

The occurrence of subrelativistic events is rather frequent, and a h o s t  two 

hundred outstanding events have been detected by various ionosphere observa- 

tions since 1938 (c.f. kestka, 1966; Basler and m e n ,  1964). 

As possible attributes of a cosmic-ray-flare, one may count 

lar kinds of landscape or  time-variation of the flare observed by 

several particu- 

various techniques, 
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ranging from radio waves to y-rays (Ellison, 1963; Kiepenheuer, 1964; Givsky; 

1965 and 66). Among them, dynamic spectral features of solar radio outbursts 

provide the most promising tool for clarifying the nature of the cosmic-ray- 

flare. By statistical examination of solar radio outbursts and sub-relativistic 

solar protons in the last sunspot maximum, it has been shown that the emission 

of such high energy particles arises in close association with the occurrence of 

major type IV outbursts (Hakura and Goh, 1959; Thompson and Maxwell, 1960; 

Kundu and Haddock, 1960). The relation seems to be quite reasonable, because 

the type IV outburst is caused by a synchrotron radiation due to highly accelerated 

electrons spiralling in the solar magnetic field, and at the same time the gene- 

ration of high energy protons in the excited solar atmosphere can be expected 

(Boischot and Denisse, 1957). 

Satellite observations in a later half of the last solar cycle, however, have 

revealed numerous increases of low energy solar protons (E, = 100 kev - 10 
MeV) that had apparently little correlation with the type IV radio outbursts. Some 

of these observations have shown that the Mev-protons were confined within a 

region co-rotating with the sun which modulated the geomagnetic activity and the 

galactic cosmic ray intensity on the orbit of the earth with a 27 days period 

(Bryant, Cline, Desai, and McDonald, 1965; Fan, Gloeckler, and Simpson, 1965). 

The appearance of recurrent geomagnetic disturbances has been known as a 

prominent feature of the earth storms in the decreasing phase of the sunspot 

activity (Sinno, 1964). 

The solar cycle variation in solar particle radiations is surely one of the 

most interesting subjects in the field of solar-terrestrial relationship. It has 

2 



b 
d 

? 

r )  

been known that no relativistic solar cosmic rays was observed during the maxi- 

mum sunspot activity (c.f. Obayashi, 1964). Svestka, (19861, tracing PCA events 

back to 1938, has shown that the sub-relativistic particles also tend to  avoid the 

top of sunspot activity during the last three sunspot cycles. Here, a question 

arises, "Is the sunspot number a unique measure of solar activity?" The irn- 

portance of this problem has been emphasized, by Gnevyshev (1963) who showed 

the existence of two peaks of a coronal line intensity observed in the course of 

the last solar activity. The purpose of the present paper is to make a complete 

list of PCA's and associated solar-terrestrial events during the solar cycle 19th, 

on a basis of reasonably uniform criteria, and reexamine their casual relation- 

ship in various phases of solar activity. Three distinguishable peaks of solar 

corpuscular activity that appeared in 1957, 1960 and 1963 will be discussed. 

2. Polar Cap Absorptions and Associated Events in Years 1954-65 

2.1 Daily Indices of fmin-increase ' 

As useful detectors of the PCA, we may count various ionosphere observa- 

tions, such as VHF forward scatter transmissions, riometers, vertical absorp- 

tions, trans-polar-cap VLF transmissions, and fmin of vertical ionosphere 

sounders (c.f. Sawyer, et. al., 1966). Among them, the fmin, minimum observable 

frequency on vertical sounding ionogram, has some advantages in the world-wide 

coverage of observing stations and the retrospectivity due to its long observational 

his tory. 

The value of fmin increases when an abnormal ionization is produced in the 

polar cap ionosphere by precipitating solar cosmic radiations. When all iono- 

sphere echos a re  completely absorbed by an intense ionization, such condition is 
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called the "blackoutf*. As an example, a solar-geophysical event, that of August 

16, 1958, is plotted in Fig. 1. On that date an intense flare of importance III+, 

associated with a major type IV radio outburst, occurred at 04:32 U.T. Simul- 

taneously with the onset of the flare, a Sudden Ionosphere Disturbance (SID) was 

noted in an fmin observation at Alert ,  Canada; this is attributed to an excessive 

solar X-ray burst emitted from an excited coronal condensation at the time of 

the flare. A few hours after the SID, an increase in fmin value started again, 

indicating the onset of a PCA event. Concurrently, an incidence of solar cosmic- 

ray protons of energies 10-100 Mev was detected by a direct measurement of 

energetic particles by Explorer 4 in its orbit. The enhancement of fmin values 

lasted for about 3 days, 

A general mophology of PCA's has been established on a series of synoptic 

studies of outstanding events observed during the IGY 1957-58, when an extensive 

observing network was in operation (Hakura, et al., 1958; Obayashi and Hakura, 

1960; Hakura and Nagai, 1964; Hakura, 1957). The results have shown that the 

stations with invariant geomagnetic latitudes greater than 80' are safe from any 

influence of the auroral zone absorptions, and thus can be a reliable monitor of 

PCA events. Canadian data a re  especially useful because of their long history of 

observation since 1949. A number of PCA events have been noted by an exami- 

nation of fmin-time series of Canadian stations (Jelly and Collins, 1962; Jelly, 

1963). 

In the present paper, daily indices of PCA activity were computed for 

Resolute Bay, Canada (84.3' in corrected geomagnetic latitude, Hakura, 1965), 

using the following definitions: 
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Ns = number of hours per UT day with fmin 2 4 Mc/s, and 

N, = number of hours per UT day with fmin 2 2 Mc/s. 

The indices thus obtained can be a measure of PCA-producing solar cosmic rays, 

since they indicate some lower limits of total solar cosmic ray flux in certain 

energy ranges, impinging upon the polar cap during a day. 

The indices were computed for years 1954-65, and the results are displayed 

on 27 days - recurrence tables in Fig. 2, where the indices a re  coded into 5 

grades shown at the left of each table. When the Resolute l3ay data were not 

available, those from Thule, Greenland were supplemented for the missing date. 

The tables show a general feature of PCA-activity in the whole solar cycle, ob- 

served with two grades of sensitivities. 

2.2 Outstanding PCA Events for Years 1954-65 

Using the fmin indices, outstanding PCA events for years 1954-65 were 

selected. In the middle of Table 1, which is given at the end of the present paper, 

are  shown various information of PCA's, such a s  onset date and time in UT, 

delay-time from an associated flare A ta , approximate duration in days, im- 

portance, and type. 

The importance of a PCA is determined from the fmin indices according to 

the following criterions: 

Importanc e Criterion 

m When N, 2 10  for 2 3 successive days 
Il When N4 1 10 for 1 or 2 days 

I When N, 1 10 for 2 1 day 

I- When under I, but definitely identified as a PCA 
from other reliable sources. 

Examples of PCA's of importance I, 11, and 111 are  shown in Fig. 3. 

5 



C' 

The onset time of a PCA is determined with consultation of fmin records 

of 15 minutes interval and riometers at several polar cap stations. Sometimes, 

the onset time was quoted from former publications such as Hakura and Goh 

(1959), Obayashi and Hakura (1960), Sinno (1961), Obayashi (1962), and Yamamoto 

and Sakurai (1967). I 

PCA's are classified into three types according to their delay-times from 

the associated type IV-flare: F or fast-onset type(A t, < 8h), S or  slow-onset 

type ( A  t, 2 8h), and others (no associated type IV outburst). A sign G stands 

for the ground level solar cosmic ray  event with Ep - 10 Bev. 

2.3 Associated Events 

Table 1 also includes information of solar flares, solar radio outbursts of 

type IV, and geomagnetic storms, which presumably have direct connection with 

the onset of PCA events, 

(i) Solar Radio Outbursts of Type IV and Associated Solar Flares 

A typical major outburst consists of micro-wave impulsive bursts and follow- 

ing outbursts of type UI, II, IV/s IVdm , and IV, as  shown in Fig. 4 (Takakura, 1963; 

Fokker, 1963, and papers cited there). Each of type IV outbursts are characterized 

by their continuous spectra with long durations. Thus, in order to obtain a uni- 

form list of type IV outbursts, dynamic spectral observations with frequency 

range 10 - lo4 Mc/s at at least 3 longitudinally well-distributed stations a re  

needed. However, with some considerations we may be allowed to select type 

IV outbursts from single frequency observations with a few key frequencies, such 

as 200, 500, 3000, and 9000 Mc/s. Actually the selection of type IV outbursts 

in the present paper was based on the Netherland stations at Nera, Holandia, and 
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Paramaribo well distributed longitudinally, and to those at Toyokawa, Mitaka, 

Hiraiso, Berlin, Boulder, and Ottawa. The result was adjusted in comparison 

with "A List of Solar Radio Type IV Bursts in 1957 to 1963'' made by Kai (1967). 

An importance A, By or  C was given to each of the outbursts according to their 

magnitudes. The outbursts with importance A are fully developed and very in- 

tense, while those with importances B and C are of mediumand minor scale, 

respectively. 

The onset time, location, and importance of a flare associated with the type 

IV outburst was shown on the left side of Table 1, along with the importance of 

the type IV outburst. The flare information was mainly obtained from CRPL-FB 

series, issued by ITSA, ESSA, Boulder, Colorado, USA. 

(ii) Geomagnetic Storms 

The onset date, time in UT, delay-time from the flare, importance, and type 

of an associated geomagnetic storm are given on the right side of Table 1. Most 

of them were quoted from the table of solar-terrestrial events made by H a h r a  

and Goh (1959), Obayashi (1962), Yoshida (1965). Reports of the Geomagnetic 

and Geoelectric Observations, 1954 through 1965, issued by Kakioka Magnetic 

Observatory, Japan, and lists of geomagnetic storms in Journal of Geophysical 

Research were also used. 

It is almost impossible to make a complete list of solar-terrestrial events, 

that could convince all of researchers. Some of minor events selected in our 

table might be different from those made by others. However, the events listed 

in Table 1 can safely be used for statistical analysis of the solar-terrestrial 

relationship, since they have been selected on a reasonably uniform criteria. 
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3. Relation Between PCA's and Type IV Solar Radio Outbursts 

In what follows, statistical examination will be made on the relation between 

lype IV and PCA's observed in a period of 1956-65, where both observations are 

equally available. 

(i) PCA-Producing Probability of Type IV Outbursts 

In the second and the third columns of Table 2-1, are shown the number and 

percentage of type IV outbursts associated with PCA's. Among 116 outbursts, 

87 events, i.e. 75%, were followed by PCA's. Moreover, among 29 outbursts 

without PCA, 22 events, i.e. 73%, were minor events of importance Cy and major 

outbursts of importance A were always followed by PCA's, as shown in Table 2-2. 

Table 2-1 
PCA-Producing Probability of Type IV 

Outburst for Years 1956-65 

With PCA Without PCA 

Number of type IV 87 29 

% 75 25 

Table 2-2 
29 Type IV Outbursts Without PCA 

~~~ ~~ 

Magnitude of Type IV A B C 
~ 

Number 0 7 22 

% 0 27 73 

(ii) PCA's Associated with Type IV Outbursts 

In the second and the third columns of Table 3-1, are  shown the number and 

percentage of PCA's associated with type IV outbursts. Among 131 PCA's, 87 
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events, i.e. 66%, were related to type IV outbursts. Among 44 PCA's that cannot 

be related to any type IV outburst, 30 events, Le. 68% were minor PCA's of im- 

portance I. 

Table 3-1 
PCA Xssociated with Type IV Outburst 

With Type IV Without Type IV 

Number of PCA 87 

% 66 

44 

34 

As a result, it is evident that a close relationship between type IV out-bursts 

and PCA's, pointed out by Hakura and Goh (1959) using the IGY data, holds 

especially for events of major importance. 

The correlation between both events is increased, when propagation conditions 

for PCA-producing particles in the interplanetary space are considered. Actually, 

our data have confirmed the east-west longitudinal asymmetry of PCA-producing 

probability as  well as  the deficiency of PCA-occurrence in the northern winter 

months, of which a number of discussions were made so far (see Obayashi, 1962; 

ivestkov; and Svestka, 1966, and papers cited there). 

Table 3-2 
44 PCA's Without Type IV Outburst 

Importance of PCA 111 I1 I 

Number 1 13 30 

%I 2 30 68 

. 
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Let us denote for a certain time or space interval: 

N ( 0 )  = the number of type XV outbursts which did not produce any PCA event 
and 

N(P) = the number of type IV outbursts which produced PCA events, 
. 

Then, the PCA-producing probability, P , is defined as 

P = N(P)/N(P) t N ( 0 ) .  

Figure 5 shows PCA-producing probabilities of type IV outbursts in six 

heloographic longitude intervals. The well-known east-west asymmetry is mi- 

dently seen, suggesting that the twisted interplanetary magnetic field gives a more 

favorable propagation condition to the solar cosmic rays originating in the 

western part of solar disk than to those in the eastern part. 

Figure 6 shows seasonal variations in (A) PCA-producing probability of type 

IV outbursts, P ,  (B) number of PCA's with type IV outbursts, N (P), and (C) num- 

ber of type IV outbursts, N (P) + N (0), for years 1956-65. The PCA-producing 

probability shows a definciency in the northern winter month, though the proba- 

bility was obtained by excluding a by-chance-seasonal variation of type IV out- 

bursts shown in (C). The deficiency exists even after making correction for a 

seasonal effect using data from the southern hemisphere. 

4. Solar Cycle Variations in the Corpuscle-Activity of the Sun 

Figure 7 shows variations in (A) annual mean of Ziirich sunspot numbers, 

(B) occurrence frequency of type IV outburst per year, and (C) number of PCA 

(total, identified ground level events of solar cosmic radiations, fast, and slow 

type events) for years 1954-65. It is easily seen that variations of type N 
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outbursts and PCA's are roughly parallel throughout the whole solar cycle, show- 

ing again that principal cause of solar cosmic radiations responsible for PCA's is a 

flare with type IV solar radio outbursts. The affinity is especially close between 

the Occurrence frequencies of type IV outbursts and fast onset type PCA events, 

while most of well-defined PCA's of slow onset type occurred near the maximum 

of the sunspot number curve. 

An interesting subject seen in Fig. 7 is three peaks of occurrence frequency 

of PCA's in 1957, 1960, and 1963, respectively, in contrast with the uni-maximum 

curve of Zurich sunspot numbers. The existence of two major peaks in 1957 and 

1960 has been known by several workers including Sawyer et. al. (1966), Svestka 

(1966), and Gnevyshev and Givsky) (1966). bestka, tracing back PCA events for 

last 3 sunspot cycles, related these two peaks to a general tendency that the peaks 

of occurrence frequency of PCA's avoided the top of the solar activity curve. 

The tendency is especially evident for the GLE (ground level events of solar 

cosmic radiations) as  seen in Fig. 7. Gnevyshev and Kfivsk3; connected the sun- 

spot cycle variation of PCA's with those of coronal intensity by showing that 

proton flares develop in regions of enhanced coronal brightness, which showed 

two maxima in 1957 and 1960 (Gnevyshev and 018,966). 

In the present paper, we have our own list of PCA and related events selected 

on somewhat uniform criterion throughout the last sunspot cycle. It is worth- 

while of making a further detailed study of their solar cycle variation. 

Figure 8 shows (A) heliographic latitudes of PCA-producing flares and (B) 

annual occurrence frequencies of northern and southern flares for years 1954-65. 

11 
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In his survey of Wolar disturbances associated with PCA events1', de Jager (1966) 

called our attention to the north-south asymmetry of flare activity, that more 

PCA-sources were found to occur in the northern solar hemisphere than in the 

southern during the last three cycles. More detailed structure of the north-south 

asymmetry are seen in Fig. 8(B); There are three peaks in the occurrence 

frequency of PCA-producing flares in the northern hemisphere, while the one in 

the southern hemisphere showed a peak in 1958. 

The distributions of PCA-flares in latitude shown in Fig 8(A) is interesting 

in comparison with Maunder's Butterfly diagram. Examining the latitude distri- 

bution of sunspots from 1874 to 1913, Maunder (1922) showed that the first spots 

of a cycle occur at about 30°N and S. At sunspot maximum the zones reach *15O 

latitude, while thi3 last spots of a cycle appear at about * 8 O .  The pattern obtained 

here seems to show details of the Maunder; diagram; the northern diagram con- 

sists of 3 (or 2) separate parts, while the southern distribution shows single 

butterfly pattern. This result together with the one in (B) suggests that the last 

solar cycle consists of 2 outstanding and one rather small peak of activity, in 

1957-58, 1960, and 1963, respectively, 

We have often seen a localization of PCA-producing centers on the solar disk. 

For example, three outstanding PCA events were observed in July 1959, in associa- 

tion with three flares that occurred successively in the same MacMath plage 

region, on July 10, 14, and 16. It is interesting to examine the absolute 

longitudinal distribution of PCA-sources during the whole course of solar 

activity. 
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Let us denote: 

d = date of flare observation expressed by (date + hour/24), and 

A = apparent heliographic longitude of the flare. 

Then, the data of CMP (central meridian passage) of the flare is given 

d* = (d  -360 2 7  A ) .  

Figure 9 shows the distribution of CMP date of PCA-producing flares in the 

northern and southern hemispheres, on a chart of 27 solar rotation day. On the 

whole, there is certainly a tendency that the PCA-flares occur in the same active 

region even for a few solar rotation periods. 

Figure lO-(IV) summarizes the longitudinal distribution of the CMP dates 

for solar rotation numbers 1697 - 1795, Le. July 24, 1957 through October 17, 

1964. It is seen that there a re  (1) two inactive regions on the 2nd-6th days and 

17th day, as well as (2) four active regions on 8th-9th, 12th-l7th, 19th-20th, and 

23rd-24th days, during the whole period of the last solar activity. Fig. l O - ( I )  

through (III) gives the distributions in three different phases of solar activity: 

(I) solar rotation numbers 1697-1719, July 24, 1957 - March 6, 1959, (11) solar 

rotation numbers 1720-1764, March 7, 1959 - July 3, 1962, and (In) solar rota- 

tion numbers 1765-1795, July 4, 1962 - October 17, 1964. 

In the period (I) which included the first peak of PCA-activity, there were 

at least four active center and their longitudinal distribution looks rather random. 

On the other hand, the active regions were restricted in 2 parts of narrow helio- 

graphic longitudes in the periods (11) and (ID) (c.f. Sakurai, 1966), though the 
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positions of active regions were somewhat different in the two periods. The 

localization of activity was especially outstanding in the period (II) which includsd 

the second peak of PCA-activity. 

It is believed that the interplanetary magnetic field is generated as a result 

of the transport of the solar magnetic field with the outflowing solar plasma. 

Then, the localization of solar active centers might mean the simplification of 

interplanetary field in the declining period of sunspot activity (II) and (III), from 

the complexity observed in the maximum period (1). Actually, in 1963, the satellite 

IMP-I revealed a simple sector pattern of the interplanetary space that lasted 

for more than several solar rotations (Ness, et. al., 1964). 

5. Recurrent Geomagnetic Storms and Solar Cosmic Radiations 

Figure 11 shows sunspot cycle variations in (A) annual mean ofXKp, (B) 27 

days autocorrelation coefficient of X K p ,  and (C) numbers of two different kinds of 

geomagnetic storms, SC- and G-types, observed at Kakioka, Japan. The SSC's 

occur rather sporadically and may be connected with the onset of major flares in 

the central regions of the solar disk. The SG's start gradually, last for a week 

or so, and sometimes recur with some 27 days period. 

What is obvious in Fig, 11 is two sets of affinity between (1) ZKp and SSC, 

and (2) autocorrelation coefficient and SG. It is easily seen that two outstanding 

peaks of ZKp in 1957 (I) and 1960 (11) are mainly due to the occurrence of SSC's. 

Because of sporadic nature of the SC storm, the 27 days autocorrelation coef- 

ficient of X K p  showed very low value during the first peak of geomagnetic activity, 

1957-58. A slight enhancement of the coefficient seen in 1960 (II) is due to the 
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locality of flare-sources discussed in Fig. 10. Since the geomagnetic storm- 

producing probability shows a maximum at the CMP of so-wce-flares, the locality 

of type IV sources causes some recurrency in spite of sporadic nature of the 

flare-occurrence itself. 

Another interesting problem seen in Fig. 11 is an inverse relation of ZKp 

value to its recurrency, in 1961-64. I t  is known that the Z Kp value is linearly 

related to a daily average of solar wind velocity (Snyder, et al., 1963) and the 

interplanetary magnetic field magnitude (Wilcox, et al., 1967). Thus, the inverse 

relation shows that a nice traffic regulation of 27 day period was established 

during the end of solar cycle (IlI) when the solar wind velocity and the inter- 

planetary field became lowered. 

Generally speaking, the 27 days autocorrelation coefficient of ZKp showed a 

gradual increase toward the sunspot minimum form 1956 to 1964. The similar 

tendency is seen in the variation of G-type geomagnetic storms. If we assume 

the occurreme frequency of the SG as a representative of the recurrency, we 

can see a secular variation of the recurrency for 4 solar cycles from 1924 to 

1965 in Fig. 12, where occurrence frequencies of SC storms, non-SC storms 

(SG's),  and sunspot numbers are  given, The non-SC recurrent storms show a 

saw-tooth distribution with 11 years period. This, along with a possible periodicity 

of 3 solar cycles, might afford a tool for long-term prediction of the recurrence. 

Evidence for the 27-days-recurrent PCA was first shown by Gregory and 

Newdick (1964), and later criticized by Basler and Owren (1964) using 105 well 

defined events from Jan. 1957 to Feb. 1962. However, it is obvious from our 
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results that the recurrence of PCA's should be examined for the data obtained 

during the low solar active period, when the geomagnetic recurrence becomes 

predominating. Figure 13 shows day to day variations in N, and N4 indices for 

6 solar rotations 1773-78. This period is especially interesting, since Bryant 

et al. (1965) have presented a clear recurrence of Mev proton events using the 

Explorer XIV satellite data. Associated phenomena such as solar flares, type 

IV solar radio outbursts, and geomagnetic storms are indicated by the symbols 

shown in the top of the figure. Except for a type IV-associated event on April 15, 

4 other detectable PCA events in the present period occurred with some 27 days 

recurrence, starting on 5th-6th days of the table. If we assume these PCA's 

as identical with Mev solar proton events, then the recurrent events persisted 

for the whole period considered here. 

Figure 14 shows the relation between the Mev proton flux given by Bryant, 

et al. and N, index of PCA's obtained from Fig. 13. Among 9 events, 8 proton 

events a re  well above the threshold value, while only 6 events can be identified 

as PCA's (4 definite PCA's of Imp. I, a PCA of Imp. I-, and a doubtful PCA of 

Imp. I--). The result clearly shows a superiority of the satellite data to the 

ionospheric absorption measurement for the detection of solar Mev proton events 

during the low solar active period. In recent years, measurable energy range 

by space vehicles goes lower and lower, and numerous increases of solar cosmic 

ray intensity have been detected, for example, by the IMP-1 with 1 Mev proton 

detector (Fan et. al., 1965), and by the Mariner IV with 0.5 Mev detector (Krimigis 

and Van Allen, 1966). These data together with fmin data, which has still an 

advantage in its retrospectivity or availability for a long period of time, will 

afford a nice tool to examine the recurrence tendency in the low sunspot activity, 
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All  of low energy proton observations for solar rotations 1767 through 1811 are 

shown on 27 days recurrence table in Fig. 15 - left, where, B means Bryant et. al., 

F Fan et. al., K Krimigis and Van Allen and f fmin index N, 1 4. It is seen 

that the recurrent series starting from the 5th-6th days is a really clear one 

lasting for more than 15 solar rotations in 1963-64. Figure 15 - right, shows 

27 days recurrent table for the geomagnetic ZKp index, digitized into 6 grades 

shown at the top of the table. In this case the recurrence lasted for about 25 

solar rotations from the end of 1962 to the end of 1964. 

An average feature of low energy proton events along 27 days for solar 

rotation 1767-84 is shown in Fig. 16: (A) the Occurrence frequency of Mev proton 

events, and (B) that of N, index of PCA. In comparison, are shown average 27 

days variations in (C)  geomagnetic X K p  index and (D) neutron intensity at Deep 

River, and Occurrence frequencies of (E) type IV outbursts and (F) CMP dates 

of the source regions. Predominating peaks observed from the 5th to 12th days in 

in (A) and (B) a re  due to the recurrent series of solar Mev proton events. This 

series coincides with those of (C) geomagnetic2Kp-index and of (D) neutron 

intensity variations, which have been reported as tracable for over 20 solar 

rotations (Mori, et. al., 1964). Thus, it can be said that the Mev protons were 

confined within a region corotating with the sun which causes an enhancement of 

geomagnetic activity and at the same time modulates the galactic cosmic radia- 

tions at the orbit of the earth with the 27 days recurrent period. 

The distribution of type IV outbursts shown in (E) were almost uniform along 

the 27 days, telling that these recurrent events have no direct connection with 

any individual major solar flares. The distribution of CMP dates of type I V  
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sources (F) shows that the recurrent series appeared a few days after the CMP 

of an inactive region of 23rd-3rd days, and entirely out of phase with the most 

active region of 12th day. Figure 17 is another expression of 27 days variations 

in ZKp, N, index, and coronal green line G6 (quoted from Sinno, 1964, and 

Obayashi, 1964), as well 813 sector structure of interplanetary magnetic field 

observed by the satellite IMP-1 in the same period (Ness  et. al., 1964). The 

dates 5, 10, 15, 20, and 25 are indicated along the ZKp variation. The ZKp and 

N, observed at the orbit of the earth are connected with the solar coronal data 

observed 4 days earlier, assuming a solar wind velocity of 500 km/s. It is evi- 

dent that the maxima of ZKp and N, index on the 7th day were situated at a 

sector boundary of the interplanetary magnetic field. This is consistent with a 

finding by Ness and Wilcox (1965) that the regions of high magnetic field intensity 

and high solar wind velocity always followed these corotating field reversal 

regions. As shown elsewhere (Hakura, 1964), a maximum of variance of the 

interplanetary magnetic field observed by Mariner 11 (Snyder, et. al., 1963) 

occurred at the leading part of the velocity enhancement, or at the field reversals. 

The turbulence in the interplanetary field may be attributed to Kelvin- 

Helmholtz instability that developed along the velocity discontinuity (Dessler and 

Fejer, 1963) and the sheet pinch instability produced along the field reversal 

region (Sakurai, 1966). The twisted fan shaped region of the irregularity corotating 

with the sun might be the cause of the recurrent cosmic ray modulation. 

The continual presence of Mev proton events, however, needs some particle- 

acceleration mechanism, and has been explained by the following hypothesis: 
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(1) The continuous acceleration of Mev protons exists at the bottom of a 

sector boundary. 

(2) It does inan active region of the sun, and energetic particles produced 

are stored in the interplanetary magnetic field for a few solar rotations. 

(3) It does in the interplanetary space in turbulent interface. 

\ 

The first hypothesis seems to be unreasonable since they are connected with 

an inactive region of the coronal emission as shown in Fig. 17. The old active 

region proposed by Mustel (1961) can not be the root of the present sector 

boundary, since the 2nd-6th days remained inactive throughout the last sunspot 

cycle as shown at the top of Fig. 10. 

For the second hypothesis, we had a pretty active region that appeared during 

the third period of PCA activity (III). Suppose that the region is connected with 

the turbulent region with a bottle-shaped interplanetary field, then the solar 

cosmic rays produced in the active region will propagate along and be stored 

in the magnetic bottle, especially in the turbulent magnetic region. 

Statistics shown in Fig. 18 might give a support to the present hypothesis, 

where solar cycle variations in K2 and k4 indices (top), ratio k2 /E4 (middle) , 

and 27 days autocorrelation coefficient of ZKp (bottom) are given. It is noted 

that variations in g4 and g2 were almost parallel during the high sunspot 

number, while the ratiog2 /N4 became greater in 1961 through 1963. This shows 

that the Mev proton events represented by enhancement of N, index became 

predominant during the decreasing period of sunspot activity, when the recurrence 

of geomagnetic activity, Z K p ,  also enhanced. However , an important point here 
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is the difference between R, and the autocorrelation coefficient in 1964. The 

PCA producing Mev proton was absent, N, = 0, while a still sound sector structure 

of interplanetary space existed as seen by a high value of the autocorrelation 

coefficient in 1964. The appearance of recurrent PCA's, i.e. Mev proton events 

is caused by the formation of a solid sector structure of the interplanetary space. 

However, it is also strongly controlled by the type IV activity discussed in Fig. 7. 

As pointedout /by Fan et al. (1965), the third hypothesis cannot explain the 

reason why not all the field reversing, corotating regions contain Mev protons 

at all times, However, it is interesting to note that the long-lived recurrent 

storms of galactic cosmic rays were observed only when the same sector 

boundary sfljept the earth. Though we do not have any evidence that supports 

the peculiarity of the present sector boundary, this hypothesis is still surviving. 

6. Conclusion 

Daily indices of PCA-activity were computed for years 1954-65, which covers 

the whole period of the solar cycle 19th. Outstanding PCA events were selected 

on the basis of the activity indices, and correlated with other solar-terrestrial 

phenomena, such as solar flares, type IV radio outbursts, and geomagnetic storms. 

A study of solar-terrestrial relationship was made using the daily indices, the 

table of outstanding events, along with satellite observations of low energy solar 

protons. Several important results obtained of the solar cycle variation in the 

corpuscular activity will be summarized as follows: 

1. A close correlation between PCA's and type IV solar radio outbursts 

holds throughout the whole solar cycle considered here, especially for events 

of major importance. 
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The correlation was increased, when propagation conditions for PCA-producing 

particles in the interplanetary space were considered. A statistical study showed 

an east-west asymmetry of a PCA-producing probability of type IV sources, and 

also a deficiency of PCA-occurrence in northern winter months. 

2. Solar corpuscular activity inferred from Occurrence frequencies of PCA's 

and type IV outbursts showed three peaks during the last solar cycle, i.e. two 

outstanding peaks in 1957 (I) and 1960 (It), and a smalllpeak in 1963 (III). During 

the first peak of activity (I), the type IV-sources appeared equally in both the 

northern and southern hemispheres of the sun. On the other hand, the active 

centers existed only in the northern hemisphere, during the later phases of solar 

activity (n) and (III). Consequently, the heliographic latitude time distribution 

of type IV-sources showed a complicated pattern with three wings in the northern 

hemisphere, which is different from the Maunder's simple Butterfly diagram ob- 

tained for sunspot regions. 

3. There was a tendency that the PCA-flares occurred in the same active 

regions even for a few solar rotations. A statistic of the longitudinal distribution 

of CMP dates of the active centers showed that there were at least four active 

regions in the period (I), while the active regions were restricted in two parts 

of narrow heliographic longitudes in the periods (II) and (XI). Throughout the 

whole solar cycle, there were two definitely inactive longitude-regions on the 2nd- 

6th days and 17th day of solar rotation. 

The localization of active centers in the later phase of solar activity might 

be connected with a simple sector pattern of interplanetary magnetic field re- 

vealed by the satellite IMP-1. 
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4. The solar cycle variations in both the annual mean of geomagnetic ZKp 

index and occurrence frequency of the SSC (geomagnetic storms with sudden com- 

mencement) showed two peaks in the period (I) and (11). Because of sporadic nature 

of the SSC-occurrence, the 27 days autocorrelation coefficient of ZKp was very low 

for the first period (I). On the other hand, the locality of flare-sources caused 

an enhancement of the coefficient in the period (II). 

The solar cycle variation in the SG-occurrence (the SG stands for a gradual 

geomagnetic storm) was similar to that in 27 days coefficients. Both of them 

increased toward the end of the solar cycle, and had la prominent peak in the 

period (III). The saw-tooth distribution of the non-SC recurrent storm occurred 

with 11 (and possibly 33) years-periodicity in the years, 1924 through 1965. 

5. During the later phases of solar corpuscular activity ( I C )  and (Ill'), various 

space vehicles detected a number of solar Mev protons which sometimes caused 

a slight PCA event detectable by the daily PCA index of higher sensitivity ( N 2 ) .  

A recurrent series of the Mev protons starting from the 5th-6th days lasted for 

about 15 solar rotations in 1963-64. This series coincided with a part of recur- 

rent series of geomagnetic Z Kp index and galactic-cosmic-ray variations, which 

were tracable for about 25 solar rotations, ranging from the end of 1962 to the 

end of 1964. The result means that the MeV protons were confined within a region 

corotating with the sun which caused an enhancement of geomagnetic activity 

and at the same time modulated the galactic cosmic ray intensity at the orbit of 

the earth with a 27 days recurrent period. 
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The maxima of ZKp and Mev proton activity on the 7th day were situated at. 

a field reversal region of the interplanetary magnetic field observed by IMP-1. 

The root of the field reversal region was identified with the persistently inactive 

region of PCA-productivity and coronal green line G6 intensity. 

6. The appearance of recurrent PCA's or  Mev protons is no doubt correlated 

with the formation of a solid sector structure of the interplanetary magnetic 

field. However, it is also strongly controlled by the productivity of low energetic 

solar protons of the sun. Our available materials seem to support a hypothesis 

that the continuous acceleration existed in an active region of the sun, and ener- 

getic particles produced were stored in the interplanetary magnetic field for a 

few solar rotations. 
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Figure 2. 27 days-recurrence tables of daily PCA-act iv i ty indices, N, (left) and N, (right) 
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HELIOGRAPHIC LONGITUDE OF FLARES 

Figure 5. PCA-producing probab'ilities of type IV  sources in six 
heliographic longitude intervals, inferred from the locations of 
as soci ated f I ares. 
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Figure 6. (A) PCA-producing probability o f  type I V  outburst, (B) 
Number o f  PCA’s Type IV, and (C) Number of type IV  outbursts 
for each month, January through December. 
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Figure 9. Distribution of CMP date of PCA-pro- 
ducing flares in the northern and southern hernis- 
pheres, on 27 days recurrence chart. 
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notified by vertical dotted lines. 
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